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Through a nonperturbative quantum theory, we investigate how the quasielectron excitations of a two-
dimensional electron gas are modified by strong coupling to the vacuum field of a microcavity. We show that
the electronic dressed states originate from a Fano-type coupling between the bare electron states and the
continuum of intersubband cavity polariton excitations. In particular, we calculate the electron spectral function
modified by light-matter interactions and its impact on the electronic injection of intersubband cavity polari-
tons. The domain of validity of the present theoretical results is critically discussed. We show that resonant
electron tunneling from a narrow-band injector can selectively excite super-radiant states and produce efficient
intersubband polariton electroluminescence.
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I. INTRODUCTION

Cavity quantum electrodynamics in the strong-coupling
regime is presently the subject of many fascinating investi-
gations in several interesting systems, including ultracold
atoms,1 Cooper pair quantum boxes,2 and semiconductor
nanostructures.3 In the strong-coupling regime, the eigen-
states of a cavity system are a coherent mixing of photonic
and electronic excitations. This occurs when the light-matter
interaction, quantified by the so-called vacuum Rabi fre-
quency, is dominant with respect to loss mechanisms for the
cavity photon field and for the electronic transition.

Recently, the strong-coupling regime has been demon-
strated also between a planar microcavity mode and an inter-
subband transition in a doped semiconductor quantum well
�QW�. The normal modes of such a system are called inter-
subband cavity polaritons.4–12 The active electronic transi-
tion is between two conduction subbands, where a dense
two-dimensional electron gas �2DEG� populates the lowest
one. Large vacuum Rabi frequencies can be achieved thanks
to the giant collective dipole associated to the dense electron
gas and even an unusual ultrastrong-coupling regime can be
reached.9,10,13

Electroluminescence experiments in microcavity-
embedded quantum cascade devices14,15 have recently dem-
onstrated that it is possible to obtain intersubband cavity po-
lariton emission after resonant electrical excitation even at
room temperature �and even a lasing mechanism has been
proposed16�. A fundamental question to address is how the
strong interaction with the microcavity vacuum field modi-
fies the quasielectron states in the quantum well and how the
electron tunneling is affected. In this paper, we present a
quantum theory to investigate such fundamental problems.
We show that the electronic eigenstates originate from a
Fano-type coupling between the bare injected electron and
the continuum of cavity polariton modes. Our theory demon-
strates that resonant electron tunneling from a narrow-band
injector contact can selectively excite polaritonic states lead-
ing to ultraefficient polariton electroluminescence.

The paper is organized as follows. In Sec. II, we discuss
the general formalism by presenting the quantum Hamil-

tonian and the approximations behind it and by discussing
the concept of the electron spectral function in the noninter-
acting case. In Sec. III we present the calculations leading to
the spectrum of the Hamiltonian and to the determination of
the electron spectral function in the light-matter interacting
case. In Sec. IV we calculate the tunneling coupling and the
radiative lifetime of the excited states and present the result-
ing electroluminescence spectra. Conclusions are drawn in
Sec. V.

II. GENERAL FORMALISM

To describe the system to investigate, we consider the
following quantum Hamiltonian:

H = �
k

��1�k�c1,k
† c1,k + �

k
��2�k�c2,k

† c2,k + �
q

��c�q�aq
†aq

+ �
k,q

���q�aqc1,kc2,k+q
† + �

k,q
����q�aq

†c2,k+qc1,k
† , �1�

where ��1�k�= �2k2

2m� and ��2�k�=��12+ �2k2

2m� are the energy
dispersions of the two quantum well conduction subbands as
a function of the in-plane wave vector k, with m� being the
effective mass. The corresponding electron creation opera-
tors are c1,k

† and c2,k
† . �c�q� is the frequency dispersion of the

cavity photonic mode and aq
† is the corresponding photon

creation operator. Due to the selection rules of intersubband
transitions, we omit the photon polarization, which is as-
sumed to be transverse magnetic �TM�. Being all the inter-
actions spin conserving, we can omit the electron spin. For
simplicity, we consider only a photonic branch, which is qua-
siresonant with the intersubband transition, while other cav-
ity modes are supposed to be off resonance. The interaction
between the cavity photon field and the two electronic con-
duction subbands is quantified by the coupling constant

��q� =� �12
2 d12

2

��0�rLcavS�c�q�
q2

��/Lcav�2 + q2 , �2�

where c is the light speed, d12 is the intersubband transition
dipole, �r is the cavity dielectric constant, and S is the sample
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area. Here, we have considered the simple case of a � /2
cavity of length Lcav, where � /Lcav is the cavity photon
quantized vector along the growth direction. The geometrical
factor q2

��/Lcav�2+q2 is due to the TM-polarization nature of the
intersubband transition. Here, for simplicity, we are consid-
ering the case of just a single quantum well coupled to the
cavity quantum field. Notice that in the Hamiltonian in Eq.
�1� the antiresonant terms of the light-matter interaction have
not been included. Therefore, here we can describe the
strong coupling for the two-subband system, but not all the
peculiar features of the ultrastrong-coupling regime.8–10,13

If one is interested in describing the dynamics of the mi-
crocavity under optical excitation, it is possible to use an
effective Hopfield Hamiltonian with bosonic operators asso-
ciated to the intersubband polaritons, which are the elemen-
tary optical excitations of the system. If, instead, one is in-
terested in studying microscopically how the electronic
injection into such a microcavity system is modified by non-
perturbative light-matter excitation, it is necessary to work
with the full fermionic Hamiltonian in Eq. �1�. In fact, elec-
trical excitation occurs through injection of �fermionic� car-
riers: the dynamics must include the �bosonic� optical exci-
tations and the electronic �fermionic� excitations at the same
level. As well known in the theory of quantum transport,17 if
we wish to study the tunneling injection of one electron at
low temperature, we have to determine the electron spectral
function, defined as

Aj
+�k,�� = �

	

��	�cj,k
† �FN��2
�� − �	� , �3�

where �FN� is the N-electron Fermi sea ground state times the
vacuum state for the cavity photon field and j=1,2 is the
conduction subband index. The index 	 labels the excited
�N+1�-electron eigenstates and ��	 are the corresponding
eigenenergies. Note that even if in the present paper we con-
sider the case of zero temperature, the theory can be applied
as long as KBT is much smaller than the Fermi energy of the
two-dimensional electron gas.

As apparent from Eq. �3�, the electron spectral function is
the density of quasielectron states, weighted by the overlap
with the bare electron state cj,k

† �FN�. In other words, it is the
many-body equivalent of the single electron density of states.
This is the key quantity affecting the electron tunneling and
can be nontrivially modified by interactions like in the case
of superconductors. For a noninteracting electron gas,
c1,k

† �FN� and c2,k
† �FN� are eigenstates of the Hamiltonian and

thus all the other eigenstates are orthogonal to them. There-
fore the noninteracting spectral functions are

A1
+�k,�� = 
�� − �1�k����k − kF� , �4�

A2
+�k,�� = 
�� − �2�k�� , �5�

where kF is the Fermi wave vector. ��x� is the Heaviside
function and its presence is due to Pauli blocking: c1,k

† �FN�
=0 for k�kF.

III. SPECTRAL FUNCTION WITH LIGHT-MATTER
INTERACTIONS

As seen in Sec. II, in the noninteracting case, the electron
spectral function is just a Dirac delta. Physically, this means
that an electron with wave vector k can be injected in the
subband j=1,2 only with an energy equal to the bare elec-
tron energy �� j�k� and that such excitation has an infinite
lifetime. By contrast, interactions can profoundly modify the
nature of electron excitations and therefore produce qualita-
tive and quantitative changes in the electron spectral func-
tions. In the case of a weakly interacting electron gas, the
spectral function has a broadened “quasielectron” peak: the
spectral broadening is due to the finite lifetime of the elec-
tronic excitation. In the case of a strongly interacting elec-
tron gas �like in the case of superconductors� the electron
spectral function can be qualitatively different from the non-
interacting gas. Here, we are interested in how the nature of
the quasielectron excitations is modified by the strong cou-
pling to the vacuum field of a microcavity. In particular, we
assume that the light-matter interaction is the strongest one.
We will provide here a nonperturbative theory to determine
the dressed electronic excitations in such a strong-coupling
limit and their corresponding spectral function. All other re-
sidual interactions will be treated as perturbations. The con-
sistency and limit of validity of such a scheme will be dis-
cussed in Sec. IV, where the theoretical results are applied.

In the interacting case, it is easy to verify that c1,k
† �FN� is

still an eigenvector of the Hamiltonian in Eq. �1� and thus the
first subband spectral function A1

+�k ,�� is still given by Eq.
�4�. Instead for the electrons in the second subband we have
to distinguish between two cases: k well inside or outside the
Fermi sea. In the first case, an electron in the second subband
cannot emit a photon because all the final states in the first
subband are occupied �Pauli blocking�; hence, the spectral
function will be given by the unperturbed one �Eq. �5�	. Well
outside the Fermi sea, an injected electron can emit and the
spectral function will be modified by the light-matter inter-
action. A smooth transition between the two cases will take
place for �k−kF� of the order of the resonant cavity photon
wave vector qres, where �c�qres�=�12. Being the ratio qres /kF
typically very small, on the order of 10−2 �see Ref. 18�, we
can safely consider an abrupt transition at the Fermi edge.

In order to evaluate A2
+�k ,�� for kkF, we need to find

all the �N+1�-electron eigenstates that have a nonzero over-
lap with c2,k

† �FN�. In order to do this we notice that the
Hamiltonian in Eq. �1� commutes with the number of total
fermions

N̂F = �
j=1,2

�
k

cj,k
† cj,k,

the total in-plane wave vector operator

K̂ = �
j=1,2

�
k

kcj,k
† cj,k + �

q
qaq

†aq,

and the excitation number operator
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Q̂ = �
k

c2,k
† c2,k + �

q
aq

†aq.

Hence the eigenstates �	� of H can be also labeled by the
corresponding eigenvalues N	, K	, and Q	. We will thus

identify an eigenstate of H in the subspace �N̂F=N ,K̂
=K , Q̂=Q� as �N ,K ,Q ,	�, where the index 	 now runs over
all the eigenstates of the subspace. The states obtained by
applying electron creation or destruction operators on the

eigenstates �N ,K ,Q ,	� are still eigenstates of N̂F, K̂, and Q̂.
The state c1,k

† �N ,K ,Q ,	� is in the subspace labeled by the
quantum numbers �N+1,K+k ,Q�, c1,k�N ,K ,Q ,	� in �N
−1,K−k ,Q�, c2,k

† �N ,K ,Q ,	� in �N+1,K+k ,Q+1�, and
c2,k�N ,K ,Q ,	� in �N−1,K−k ,Q−1�.

Having �FN� quantum numbers �N ,0 ,0� the state c2,k
† �F� is

thus in the subspace labeled by the quantum numbers �N
+1,k ,1�. We can limit ourselves to diagonalize H in this
subspace, which is spanned by vectors of the form: �i�
c2,k0

† 
 j=1
N c1,kj

† �0�, where �0� is the empty conduction-band
state and � j=1

N k j =k−k0, and �ii� aq0

† 
 j=1
N+1c1,kj

† �0� with
� j=1

N+1k j =k−q0. For a large number of electrons, the exact
diagonalization of the Hamiltonian in this subspace is an
unmanageable task. Here, we show that by a judicious ap-
proximation, we can considerably simplify the diagonaliza-
tion problem, keeping the relevant nonperturbative physics.
Namely, we claim that the elements of the �N+1,k ,1� sub-
space can be well approximated by vectors of the form

�N + 1,k,1,	� = ��	c2,k
† + �

q
��	�q�aq

†c1,k−q
†

+ �
�k���kF

�	�q,k��c2,k�+q
† c1,k�c1,k−q

† ��FN� .

�6�

To understand the origin of our approximation, let us con-
sider the time evolution picture sketched in Fig. 1. Suppose
that initially the system is in its ground state �FN�. After
injection of one bare electron, the state of the system is

�C� = c2,k
† �FN� .

If k is well inside the Fermi sphere, as we said before, it is
Pauli blocked and cannot radiatively relax into the first sub-
band. Instead, when kkF, the injected electron can radia-
tively decay, emitting a photon and falling into the first sub-
band. After the first emission the state will have the form

�A,q� = aq
†c1,k−q

† �FN� .

If the cavity system is closed and only the light-matter inter-
action is considered, the emitted photon will be eventually
reabsorbed. The system can evolve back to the state �C� or
into one vector of the form

�B,q,k�� = c2,k�+q
† c1,k�c1,k−q

† �FN� .

If k� is well inside the Fermi sea, when the second subband
electron decays, the only available final state in the first sub-
band will be the one with wave vector k�; that is, the system
will go back to state �A ,q�. If k� is on the border of the
Fermi sea, on the contrary, the system can evolve into a state
of the form �D ,q ,q� ,k��=aq�

† c1,k�+q−q�
† c1,k�c1,k−q

† �FN�. The
probability of ending in any of the �D ,q ,q� ,k�� states is
negligible. In fact, the probability for k� to be near enough to
the border of the Fermi sea for allowing an emission to elec-
tronic states with kkF is proportional to the ratio qres /kF

�1. Hence, the diagonalization problem can be simplified
and we can thus look for vectors of the form shown in Eq.
�6�. In such a subspace, spanned by ��C� , �A ,q,� , �B ,q ,k�� ,
�B ,q ,k�� , . . . , �A ,q�,� , �B ,q� ,k�� , �B ,q� ,k�� , . . .�, H has the
following matrix representation:

FIG. 1. Sketch of the dynamical coupling between quantum
states in a microcavity-embedded QW containing a 2DEG. In the
ground state, the first subband is doped with a dense 2DEG �bold
lines at the bottom of the dispersions�. Black dots represent bare
electrons, while white dots denote holes in the 2DEG. The dashed
cones depict the possible final states for an electron radiatively re-
laxing from the second to the first subband by emission of a cavity
photon. The ground state with N electrons is the standard Fermi sea
�FN�. The injection �e.g., through electron tunneling� of an addi-
tional electron in the second subband creates the state �C�
=c2,k

† �FN�, which, in the presence of light-matter interaction, is not
an eigenstate. Spontaneous emission of a cavity photon couples the
�C� state to the states �A ,q�=aq

†c1,k−q
† �FN�. Reabsorption of the emit-

ted cavity photon can couple back to the �C� state or to the states
�B ,q ,k��=c2,k�+q

† c1,k�c1,k−q
† �FN�. Spontaneous emission couples the

�B� states back to �A� states or to states of the form �D ,q ,q� ,k��
=aq�

† c1,k�+q−q�
† c1,k�c1,k−q

† �FN�. Being the relevant cavity photon
wave vectors very small compared to the Fermi wave vector, spon-
taneous emission can occur only on narrow emission cone in mo-
mentum space. Due to the small probability of photon absorption by
electrons on the border of the Fermi sea, we can neglect �D� states
and assume that the system always jumps from �B� states to �A�
states. Thus the relevant dynamics takes place only between the
states in the shaded region. We can thus neglect the other marginal
states while diagonalizing the light-matter Hamiltonian.
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HN+1,k,1 = ��
�2�k� v�q� v�q�� v�q�� ¯

v�q�T M�q� 0 0 ¯

v�q��T 0 M�q�� 0 ¯

v�q��T 0 0 M�q�� �

] ] ] � �

� ,

where M�q� is the Hamiltonian matrix block in the subspace spanned by ��A ,q� , �B ,q ,k�� , �B ,q ,k�� , . . .� that effectively
describes the system in the presence of one photon with a well defined wave vector q

M�q� =�
�c�q� + �1��k − q�� ���q� ���q� ¯

��q� �2��k� + q�� − �1�k�� + �1��k − q�� 0 ¯

��q� 0 �2��k� + q�� − �1�k�� + �1��k − q�� �

] ] � �

� ,

where v�q�= ���q� ,0 ,0 , . . .	. Since the typical wave vector q
of the resonantly coupled cavity photon mode is much
smaller than kF, we can perform the standard approximation
�2��k�+q��−�1�k����2�k��−�1�k��=�12. This way, we can
exactly diagonalize each of the M�q� blocks. As expected
from the theory of optically excited polaritons,9 by diagonal-
izing the matrix M�q� we find two bright electronic states
�i.e., with a photonic mixing component�

�� ,q� =

����q� − �12	�A,q� + ��q��
k

�B,q,k�

�����q� − �12	2 + ���q��2N
�7�

with energies ��1�k�+����q�, where

���q� =
�c�q� + �12

2
����c�q� − �12

2
�2

+ N���q��2.

�8�

Note that ����q� are the energies of the two branches of
intersubband cavity polaritons.9 The other orthogonal states

are dark �no photonic component�, with eigenvalues �2�k�
=�1�k�+�12 and eigenvectors

�l,q� =

�
k

�l�q,k��B,q,k�

�N
, �9�

where �l�q ,k� are such that �k�l�q ,k�=0 and
�k�l�q ,k��l�

� �q ,k�=
l,l�.
Since �l ,q�Hc2,k

† �FN�=0, the dark states �l ,q� are also
eigenstates of the matrix HN+1,k,1 and do not contribute to the
electron spectral function because they have zero overlap
with the state �C�=c2,k

† �FN�=0. In contrast, this is not the
case for the bright eigenstates of each block M�q�, as we find

�� ,q�Hc2,k
† �FN� =

��q������q� − �12	
�����q� − �12	2 + ���q��2N

= J�
� �q� .

�10�

Therefore, the representation of H in the subspace
��C� , �+,q�,�−,q�,�+,q�� , �−,q�� , . . .� reads

HN+1,k,1� = ��
�1�k� + �12 J+

��q� J−
��q� J+

��q�� J−
��q�� ¯

J+�q� �1�k� + �+�q� 0 0 0 ¯

J−�q� 0 �1�k� + �−�q� 0 0 ¯

J+�q�� 0 0 �1�k� + �+�q�� 0 ¯

J−�q�� 0 0 0 �1�k� + �−�q�� ¯

] ] ] ] ] �

� .

Hence, here we have demonstrated that the bare electron state c2,k
† �FN� is coupled to the continuum of the polariton modes with

all the different wave vectors q. Since the polariton frequencies �� and the coupling J� depend only on the modulus of q, we
can further simplify the diagonalization problem by considering the “annular” bright states
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�� ,q� =
1

�Lq
�

�q�=q

�� ,q� , �11�

where L=�S and 2� /L is the linear density of modes in
reciprocal space. All annular states are coupled to �C�. In-

stead, all the orthogonal linear combinations of �� ,q�
�with �q�=q� are uncoupled and therefore do not contribute
to the electron spectral function. The matrix representation
of H in the subspace ��C� , �+,q�,�−,q� , �+,q�� , �−,q�� , . . .�
reads

HN+1,k,1� = ��
�1�k� + �12 J+

��q��Lq J−
��q��Lq J+

��q���Lq� J−
��q���Lq� ¯

J+�q��Lq �1�k� + �+�q� 0 0 0 ¯

J−�q��Lq 0 �1�k� + �−�q� 0 0 ¯

J+�q���Lq� 0 0 �1�k� + �+�q�� 0 ¯

J−�q���Lq� 0 0 0 �1�k� + �−�q�� �

] ] ] ] � �

� �12�

Hence, in the subspace �N+1,k ,1�, we have found that
eigenstates of H with a finite overlap with the bare electron
have the form

�N + 1,k,1,	� = �	c2,k
† �FN� + �

q,�=�

�	,�,q��,q� . �13�

The coefficients �	 and �	,�,q as well as the corresponding
energy eigenvalues ��	 can be calculated though a numeri-
cal diagonalization of the matrix in Eq. �12�. In conclusion,
the spectral function of the second subband reads

A2
+�k,�� = �

	

��	�2
�� − �	���k − kF�

+ 
�� − �2�k����kF − k� . �14�

In Fig. 2, we show numerical results using a vacuum Rabi
frequency �R�qres�= ���qres���N=0.1�12. As it appears from
Eq. �14�, the broadening of the spectral function is intrinsic,
being associated to the continuum spectrum of frequencies
�	 corresponding to the dressed electronic states and given
by the eigenvalues of the infinite matrix in Eq. �12�. At each
frequency �	, the magnitude of the spectral function is given
by the spectral weight ��	�2, depending on the overlap be-
tween the dressed state �N+1,k ,1 ,	� and the bare electron
state �C�=c2,k

† �FN�. As shown in Eq. �12�, the electronic
eigenstates of the system are given by the Fano-type cou-
pling between the bare electron state and the continuum of
cavity polariton excitations. Indeed, the pronounced dip
around �=�12 in the spectral function is a quantum interfer-
ence feature, typical of a Fano resonance.19

As we said before the sharp transition in Eq. �14� between
kkF and k�kF is only a consequence of the approxima-
tions we made of neglecting the border of the Fermi sea and
the effect of the temperature. In a real case both effects will
tend to smoothen the transition, with the first on an energy

scale on the order of
�2kFqres

m� and the second on an energy
scale of KBT.

IV. TUNNELING COUPLING, LOSSES, AND
ELECTROLUMINESCENCE

The states �N+1,k ,1 ,	� have been obtained by diagonal-
izing the Hamiltonian �1�, which takes into account only the
coupling between the two-subband electronic system and the
microcavity photon quantum field. If, as we have assumed,
the light-matter interaction is the strongest one, all other re-
sidual couplings can be treated perturbatively. These residual
interactions include the coupling to the extracavity fields, the
interaction with contacts, phonon and impurity scattering, as
well as Coulomb electron-electron interactions.20

The states �N+1,k ,1 ,	� can be excited, for example, by
resonant electron tunneling from a bulk injector or an injec-

FIG. 2. Electron spectral function A2
+�k ,�� for the second sub-

band for all kkF. The spectral function, defined in Eq. �3�, is the
density of quasielectron states, weighted by the overlap with the
bare electron state. The integral of the spectral function over the
frequency � is by construction equal to one. Coupling parameter:
�R�qres�= ���qres���N=0.1�12.
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tion miniband. If Vk
tc is the tunneling coupling matrix element

between the state �F� and c2,k
† �F� induced by the coupling

with the injector, we have, using the Fermi golden rule, the
following injection rate:

�inj�k,	� =
2�

�
��	�2�Vk

tc�2�inj��	�nF��	� , �15�

where �inj��� is the density of electronic states inside the
contact and nf��� is its Fermi distribution. �inj���nf��� de-
termines the spectral shape of the injector. �	 comes from
Eq. �14� and represents the electron spectral weight.

It is worthwhile to notice that the formula in Eq. �15� is
quite independent from the model of injector considered. All
the relevant information is contained in the coupling strength
Vk

tc and the spectral shape �inj���nf���. Any form of scatter-
ing, including in-plane wave vector nonconserving interac-
tions or nonresonant injection, will simply give a different
�and possibly broadened� injector spectral shape.

The finite transmission of the cavity mirrors is responsible
for a finite lifetime for the cavity photons and consequently
for the dressed states �N+1,k ,1 ,	�. By using the Fermi
golden rule and a quasimode coupling to the extracavity
field, we find that the radiative lifetime �r,k,	 reads

1

�r,k,	
=

2�

�
�
q,qz

��	�q��2�Vq,qz

qm �2
���	 − ��q,qz
���k − kF� ,

where Vq,qz

qm is the quasimode coupling matrix element, �q,qz

is the extracavity photon frequency, and �	�q�= �A ,q �N
+1,k ,1 ,	� as defined in Eq. �6�. Having calculated the tun-
neling injection rate and the radiative lifetime for the differ-
ent states, we are able to evaluate the electroluminescence
spectra. It is convenient to consider the normalized photon
emission distribution corresponding to each eigenstate �N
+1,k ,1 ,	�, namely,

L�q,	� = N�
qz

��	�q��2�Vq,qz

qm �2
���	 − ��q,qz

ph � , �16�

where the normalization N is fixed by imposing �qL�q ,	�
=1. The number of photons with in-plane wave vector q and
frequency � emitted per unit time is

Nph�q,�� =
1

�
�
k,	

�inj�k,	�L�q,	�

�
1/�r,k,	

�� − �	�2 + �1/�r,k,	 + 1/�nr,k,	�2 , �17�

where the last factor accounts for the Lorentzian broadening
due to radiative and nonradiative processes. �nr,k,	 is the non-
radiative lifetime of the electronic excitations and �inj�k ,	�
is given by Eq. �15�. Figure 3 reports on representative elec-
troluminescence spectra in the case of broadband �panel �a�	
and narrow-band �panels �b�–�d�	 injectors. In the broadband
case, the emission is resonant at the intersubband cavity po-
lariton frequencies �dashed lines� and it is significant in a
wide range of in-plane wave vectors.15 In contrast, in the
case of the narrow-band electrical injector our theory shows
that the photon in-plane momentum and the energy of the
cavity polariton emission can be selected by the resonant

electron tunneling process, in agreement with what sug-
gested by recent experiments.14

In free space, the quantum efficiency of electrolumines-
cent devices based on intersubband transitions is poor
��10−5 in the midinfrared� due to the slow radiative recom-
bination of long-wavelength transitions. In the microcavity
case, the efficiency of the emission from an excited state
�N+1,k ,1 ,	� is given by �1+�r,k,	 /�nr,k,	�−1. Being 1 /�nr,k,	
essentially proportional to the matter component of the exci-
tation and 1 /�r,k,	 to its photonic fraction, we have found that
it is possible to obtain a quantum efficiency approaching
unity by selectively injecting electrons into dressed states
with a high photonic fraction. In particular, this is achievable
by avoiding injection resonant with the central peak of the
electron spectral function in Fig. 2, which corresponds to
states with strong overlap with the bare electron state.

In the present theory, we have not considered the role of
electronic disorder, which is known to break the in-plane
translational invariance. However, in the limit of large
vacuum Rabi energies �i.e., significantly larger than the en-
ergy scale of the disorder potential�, the inhomogeneous
broadening is expected to have a perturbative role.

Let us point out clearly that in order to achieve a high
quantum efficiency, it is necessary to have a considerably
narrow spectral width for the injector, on the order of a small
fraction �10−2� of the intersubband transition energy ��12.
This is essential in order to be able to inject electrons selec-
tively into the super-radiant states while avoiding both the
peak associated to the dark excitations at the bare electron
energy and the states with k�kF that cannot radiatively de-
cay. In the experiments in Ref. 14, the spectral width of the
injector �a heavily doped superlattice� is comparable to the
polariton vacuum Rabi frequency and hence such selective

FIG. 3. Extracavity electroluminescence spectra Nph�q ,��. �a�
The case of a broadband electrical injector �bandwidth equal to �12,
centered at �=�12�. The other panels show the results for a narrow-
band injector �of width 0.05�12� centered, respectively, at �b� �
=�12, �c� 1.2�12, and �d� 0.8�12. The nonradiative relaxation rate
1 /�nr,k,	 has been taken equal to 0.005�12. In all panels, the dashed-
dotted lines are the frequency dispersions �� ,q of the two cavity
polariton branches. In the first panel the solid line represents the
edge of the light cone �Ref. 18�.
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excitations of the super-radiant states cannot be reached. In
order to have an injector with narrower spectral width, sev-
eral electronic designs could be implemented. For example,
one can grow a “filter” quantum well between the superlat-
tice injector and the active quantum well: resonant electron
tunneling through the intermediate quantum well can signifi-
cantly enhance the resonant character of the excitation.
Moreover, for a given injector, improved microcavity
samples with larger vacuum Rabi frequency would allow the
system a more resonant excitation of the super-radiant elec-
tronic states.

V. CONCLUSIONS

In conclusion, we have determined in a nonperturbative
way the quasielectron states in a microcavity-embedded two-

dimensional electron gas. Such states originate from a Fano-
type coupling between the bare electron state and the con-
tinuum of cavity polariton excitations. We have proven that
these states can be selectively excited by resonant electron
tunneling and that the use of an narrow-band injector may
give rise to efficient intersubband polariton electrolumines-
cence. Our theoretical work shows that the strong coupling
to the vacuum electromagnetic field can modify significantly
the fundamental electron injection processes.
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